New robotic exosuit could push the limits of human performance

Engineering, Wearable Technology, Innovation
Image Source: http://news.harvard.edu Credit: Wyss Institute at Harvard University A system of actuation wires attached to the back of the exosuit provides assistive force to the hip joint during running.

 

What if you could improve your average running pace from 9:14 minutes/mile to 8:49 minutes/mile without weeks of training?

Researchers at Harvard’s Wyss Institute and the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) at Harvard University have demonstrated that a tethered soft exosuit can reduce the metabolic cost of running on a treadmill by 5.4 percent, bringing those dreams of high performance closer to reality.

Homo sapiens has evolved to become very good at distance running, but our results show that further improvements to this already extremely efficient system are possible,” says corresponding author Philippe Malcolm, former postdoctoral research fellow at the Wyss Institute and SEAS, and now assistant professor at the University of Nebraska, Omaha, where he continues to collaborate on this work. The study appears today in Science Robotics.

Running is a naturally more costly form of movement than walking, so any attempt to reduce its strain on the body must impose a minimal additional burden. The soft exosuit technology developed in the lab of Wyss core faculty member Conor Walsh represents an ideal platform for assisted running, as its textile-based design is lightweight and moves with the body. A team of scientists in Walsh’s lab, led by Wyss postdoctoral fellow Giuk Lee, performed the study with an exosuit that incorporated flexible wires connecting apparel anchored to the back of the thigh and waist belt to an external actuation unit. As subjects ran on a treadmill wearing the exosuit, the unit pulled on the wires, which acted as a second pair of hip extensor muscles applying force to the legs with each stride. The metabolic cost was measured by analyzing the subjects’ oxygen consumption and carbon dioxide production while running.

The team tested two different “assistance profiles,” or patterns of wire-pulling: one based on human biology that applied force starting at the point of maximum hip extension observed in normal running, and one based on a simulation of exoskeleton-assisted running from a group at Stanford University that applied force slightly later in the running stride and suggested that the optimal point to provide assistive force might not be the same as the biological norm. Confirming this suspicion, Lee and colleagues found that the simulation-based profile outperformed the…Continue Reading

Article Source: http://news.harvard.edu/gazette/story/2017/06/new-robotic-exosuit-could-push-the-limits-of-human-performance/

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: